跳转至

The LLM Scientist Roadmap

83 个字 预计阅读时间不到 1 分钟

1. The LLM architecture

  • Architectural Overview
  • Tokenization
  • Attention mechanisms
  • Sampling techniques

2. Pre-training models

  • Data preparation
    • Distributed training
    • Training optimization
    • Monitoring
  • Storage & chat templates
  • Synthetic data generation
  • Data enhancement
  • Quality filtering

3. Post-training datasets

  • Training techniques
  • Training parameters
  • Distributed training
  • Monitoring

4. Supervised Fine-Tuning

  • Rejection sampling
  • Direct Preference Optimization
  • Reward model
  • Reinforcement Learning

5. Preference alignment

  • Automated benchmarks
  • Human evaluation
  • Model-based evaluation
  • Feedback signal

6. Evaluation

  • Base techniques
  • GGUP and llama.cpp
  • GPTQ & AWQ
  • SmoothQuant & ZeroQuant

7. Quantization

  • Model merging
  • Multimodal models
  • Interpretability
  • Test-time compute