跳转至

The LLM Engineer Roadmap

97 个字 预计阅读时间不到 1 分钟

converting text into numbers through tokenization, processing these tokens through layers including attention mechanisms, and finally generating new text through various sampling strategies.

1. Running LLMs

  • LLM APIs
  • Open-source LLMs
  • Prompt engineering
  • Structuring outputs

2. Building a Vector Storage

  • Ingesting documents
  • Splitting documents
  • Embedding models
  • Vector databases

3. Retrieval Augmented Generation

  • Orchestrators
  • Retrievers
  • Memory
  • Evaluation

4. Advanced RAG

  • Query construction
  • Agents and tools
  • Post-processing
  • Program LLMs

5. Agents

  • Agent fundamentals
  • Agent frameworks
  • Multi-agents

6. Inference optimization

  • Flash Attention
  • Key-value cache
  • Speculative decoding

7. Deploying LLMs

  • Local deployment
  • Demo deployment
  • Server deployment
  • Edge deployment

8. Securing LLMs

  • Prompt hacking
  • Backdoors
  • Defensive measures